<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN-001</td>
<td>STANDARD PID FUNCTION</td>
<td>1</td>
</tr>
<tr>
<td>GEN-002</td>
<td>STANDARD LEAD/LAG DECISION PROGRAM</td>
<td>2</td>
</tr>
<tr>
<td>HVAC-001</td>
<td>STANDARD ANALOG PID CONTROL PROGRAM</td>
<td>3</td>
</tr>
<tr>
<td>HVAC-002</td>
<td>STANDARD AIR HANDLER MODE PROGRAM</td>
<td>5</td>
</tr>
<tr>
<td>HVAC-003</td>
<td>STANDARD AIR HANDLER START/STOP PROGRAM</td>
<td>7</td>
</tr>
<tr>
<td>HVAC-004</td>
<td>STANDARD REHEAT COIL CONTROL VALVE PROGRAM</td>
<td>8</td>
</tr>
<tr>
<td>HVAC-005</td>
<td>STANDARD AIR HANDLER OUTDOOR AIR DAMPER PROGRAM</td>
<td>10</td>
</tr>
<tr>
<td>HVAC-006</td>
<td>STANDARD FACE/BYPASS DAMPER AND PREHEAT VALVE CONTROL</td>
<td>13</td>
</tr>
<tr>
<td>HVAC-007</td>
<td>STANDARD EARLY START PROGRAM</td>
<td>15</td>
</tr>
<tr>
<td>HVAC-008</td>
<td>STANDARD TARGET RESET PROGRAM</td>
<td>17</td>
</tr>
<tr>
<td>HVAC-009</td>
<td>STANDARD MISCELLANEOUS CALCULATIONS PROGRAM</td>
<td>19</td>
</tr>
<tr>
<td>HVAC-010</td>
<td>STANDARD OCCUPANCY OVERRIDE PROGRAM</td>
<td>21</td>
</tr>
<tr>
<td>HVAC-011</td>
<td>STANDARD PULSE WIDTH VALVE CONTROL PROGRAM</td>
<td>22</td>
</tr>
<tr>
<td>HP-001</td>
<td>STANDARD DX COOLING CONTROL PROGRAM</td>
<td>24</td>
</tr>
<tr>
<td>HP-002</td>
<td>STANDARD FREEZE PROTECTION PUMP PROGRAM</td>
<td>25</td>
</tr>
<tr>
<td>HP-003</td>
<td>STANDARD SMART SENSOR DISPLAY PROGRAM</td>
<td>26</td>
</tr>
<tr>
<td>PUMP-001</td>
<td>STANDARD PUMP START/STOP PROGRAM</td>
<td>27</td>
</tr>
<tr>
<td>PUMP-002</td>
<td>STANDARD LAG PUMP CONTROL PROGRAM</td>
<td>29</td>
</tr>
<tr>
<td>CHILLER-001</td>
<td>STANDARD CHILLER STAGING PROGRAM</td>
<td>30</td>
</tr>
<tr>
<td>CHILLER-002</td>
<td>MECHANICAL COOLING DECISION PROGRAM</td>
<td>33</td>
</tr>
<tr>
<td>TOWER-001</td>
<td>STANDARD COOLING TOWER FAN LEAD/LAG CONTROL</td>
<td>34</td>
</tr>
</tbody>
</table>
GEN-001 – STANDARD PID FUNCTION
This routine is a standard control loop function involving an analog control variable and an analog control device.

'PID,F - PRODUCES SIGNAL FROM 0 TO 1 REPRESENTING 0-100% CAPACITY
Arg 1 cv ' controlled variable (sensor)
Arg 2 sp ' setpoint
Arg 3 kp ' proportional gain - constant
Arg 4 ki ' integral gain - constant
Arg 5 kd ' derivative gain - constant
Arg 6 bias ' initial output value when no error exists
Arg 7 actn ' directional relationship of cv and output capacity (1=DA 0=RA)
Arg 8 lerr ' error from previous scan - stored in calling program
Arg 9 intg ' integral value - stored in calling program
Arg 10 lstm ' last time the function was called - datetime variable

Numeric err ' difference between sp and cv
Numeric dltm ' difference between current time and lstm
Numeric op ' output capacity (0-1) - returned to calling program

If (passed(10)) then
 dltm = maximum((Date - lstm), Scan)
 lstm = Date
Else
 dltm = maximum(Scan, 0.01)
Endif

err = ((cv - sp) * (actn = 1)) + ((sp - cv) * (actn = 0))
op = maximum(minimum(((kp * err) + (ki * intg) + (kd * ((err - lerr) / dltm)) + bias), 1), 0)
intg = maximum(intg + (err * dltm * (((op < 1) or (err < 0)) and ((op > 0) or (err > 0)))), 0)
lerr = err
Return (op)

EXAMPLE:
This routine provides the capability to provide Proportional-Integral-Derivative (PID) control for a process variable. It can be used for temperature, pressure, and flow control applications.
GEN-002 – STANDARD LEAD/LAG DECISION PROGRAM

This routine is standard logic for a pump lead/lag configuration where the lead is alternated automatically on a regular basis.

'Tri-M Standard LEADLAG01

Line DECISION
 If CHWP5.LEAD then Goto CHWP5LEAD
 Goto CHWP6LEAD

Line CHWP5LEAD
 CHWP5.LEAD = On
 CHWP6.LEAD = Off
 If (Weekday = Wednesday) and (Hourofday = 7) then Goto SWITCHTO2

Line SWITCHTO2
 CHWP5.LEAD = Off
 CHWP6.LEAD = On
 If (Weekday <> Wednesday) or (Hourofday >= 8) then Goto CHWP6LEAD

Line CHWP6LEAD
 CHWP5.LEAD = Off
 CHWP6.LEAD = On
 If (Weekday = Wednesday) and (Hourofday = 7) then Goto SWITCHTO1

Line SWITCHTO1
 CHWP5.LEAD = On
 CHWP6.LEAD = Off
 If (Weekday <> Wednesday) or (Hourofday >= 8) then Goto CHWP5LEAD

Line E
 LEADLAG.E.TIME = Date
 Goto DECISION

Example:
When two identical pumps, such as heating hot water pumps, are installed, this program is used to automatically alternate the lead pump at a specific time on a specific day of the week.
HVAC-001 – STANDARD ANALOG PID CONTROL PROGRAM

This is a standard control loop function for temperature control via a modulating valve.

Required External Software Numeric Points:
OUTPUT.rhi, OUTPUT.rlo, OUTPUT.PID

Program Definition:
Numeric actn, CO, OUTPUTkp, OUTPUTki, OUTPUTkd, OUTPUTdbnd, OUTPUTlerr

INITIALIZE:
actn = -1
OUTPUTkp = 0.1
OUTPUTki = 0.01
OUTPUTkd = 0.001
OUTPUTdbnd = 0.2 'Deg F
OUTPUT.rhi = 75
OUTPUT.rlo = 55
Goto CNTRL

CNTRL:
If ((abs(CONTROL.POINT - CONTROL.POINT.SETPOINT)) < OUTPUTdbnd) then
Goto IN.DeadBand
PID.F(CONTROL.POINT, CONTROL.POINT.SETPOINT, OUTPUTkp, OUTPUTki, OUTPUTkd, actn, OUTPUTlerr, OUTPUTint, CO)
OUTPUT.PID = CO
OUTPUT = ((OUTPUT.PID * (OUTPUT.rhi - OUTPUT.rlo)) + OUTPUT.rlo)
Goto MODU.WAIT

MODU.WAIT:
If (TS >= 2) then Goto CNTRL

IN.DeadBand:
If ((abs(CONTROL.POINT - CONTROL.POINT.SP)) > OUTPUTdbnd) or (TS > 60) then Goto CNTRL

Variable Definitions:
actn = action (1=DA/-1=RA)
kp = proportional gain
ki = integral gain
kd = derivative
dbnd = deadband
lerr = error
int = integral value
rhi = control range high value
rlo = control range low value
CO = PID function returned value
OUTPUT = controlled variable
CONTROL.POINT = reference variable
CONTROL.POINT.SETPOINT = reference variable setpoint value
PID.F = PID function call

Example:
Analog heating valve control – as supply air temperature falls below its active setpoint, the heating valve will modulate open. As the supply air temperature rises above its active setpoint, the heating valve will modulate closed.
HVAC-002 – **STANDARD AIR HANDLER MODE PROGRAM**

This logic sets the HVAC control mode to Heating, Economizer, or Mechanical Cooling.

Line Decision
- If MCLG then Goto MECH_MODE
- Goto HEAT_ECON_MODE

Line HEAT_ECON_MODE
- HTG = On
- ECON = On
- MCLG = Off
- AHU.MODE.S = "Heating/Economizer"
- If (not CHWAVAIL) then Goto HEAT_ECON_MODE
- If (OAT > OAT.HTG.SP) and ((ST > (CLG.TRG - ((CLG.TRG - HTG.TRG) / 2))) and (RHCV <= 0)) then Goto MECH_WAIT

Line MECH_WAIT
- HTG = On
- ECON = On
- MCLG = Off
- AHU.MODE.S = "Heating/Economizer"
- If (not CHWAVAIL) or (OAT < OAT.HTG.SP) or (ST < (CLG.TRG - ((CLG.TRG - HTG.TRG) / 2))) or (RHCV > 0)
 - then Goto HEAT_ECON_MODE
- If (TM >= 10) then Goto MECH_MODE

Line MECH_MODE
- HTG = Off
- ECON = Off
- MCLG = On
- AHU.MODE.S = "Mechanical Cooling"
- If (not CHWAVAIL) then Goto HEAT_ECON_MODE
- If (OAT < (OAT.HTG.SP - 2)) or ((ST < (HTG.TRG + ((CLG.TRG - HTG.TRG) / 2))) and (CCV <= 0)) then Goto HEAT_ECON_WAIT

Line HEAT_ECON_WAIT
- HTG = Off
- ECON = Off
- MCLG = On
- AHU.MODE.S = "Mechanical Cooling"
- If (not CHWAVAIL) then Goto HEAT_ECON_MODE
- If (OAT > (OAT.HTG.SP - 2)) and ((ST > (HTG.TRG + ((CLG.TRG - HTG.TRG) / 2))) or (CCV >= 0)) then Goto MECH_MODE
- If (TM >= 10) then Goto HEAT_ECON_MODE
Line E
AHU.MODE.E.TIME = Date
Goto Decision

Example:
Based on outside air conditions, this program is used to determine if the system should operate in heating, economizer, or mechanical cooling mode.
HVAC-003 – **STANDARD AIR HANDLER START/STOP PROGRAM**

This logic commands the AHU fan to start, if the relevant interlocks (freezestat, smoke, OOS, power failure) are not in alarm. If any of these interlocks are in alarm, the fan is commanded to stop.

Line DECISION
 START.DELAY = Second * 5
 If PowerFail then Goto WAIT_TO_START
 If SFAN then Goto FAN_ON
 Goto FAN_OFF

Line FAN_OFF
 SFAN = Off
 If FREZ or SA.SMOK or AHU.OOS then Goto FAN_OFF
 If (OCC or MWU or MCD or UNCHTG or UNCCLG) and (TS > 30) then Goto WAIT_TO_START

Line FAN_ON
 SFAN = On
 If PowerFail then Goto WAIT_TO_START
 If FREZ or SA.SMOK or AHU.OOS then Goto FAN_OFF
 If (not OCC) and (not MWU) and (not MCD) and (not UNCHTG) and (not UNCCLG) and (TS > 300) then Goto FAN_OFF

Line WAIT_TO_START
 SFAN = Off
 If FREZ or SA.SMOK or AHU.OOS then Goto FAN_OFF
 If (not OCC) and (not MWU) and (not MCD) and (not UNCHTG) and (not UNCCLG) then Goto FAN_OFF
 If (TS > START.DELAY) and PWR.FAIL.STAGE3 then Goto FAN_ON

Line E
 SFAN.E.TIME = Date
 Goto DECISION

Example:

Air handling unit supply fan – if the associated freezestat is not in alarm, the supply fan will start. If the freezestat is in alarm, the supply fan will shut down or will not start.
This is standard logic for the control of a reheat coil (direct or reverse acting).

Numeric Kp, Ki, Kd, lerr, db, PIDval, RHCV.ACT, INT.MAX

Datetime LTIME

Line Decision
- RHCV.ACT = 0 ' 1 = DIRECT ACTING. Set RHCV.ACT to 1 if heating valve is
 - a 2-way N.O. valve, or if it is a 3-way valve that is
 - open to the hot water coil with 0 psi, 0 volts, or 0 mA
 - sent to the valve
 - 0 = REVERSE ACTING. Set RHCV.ACT to 0 if none of the
 - above are true.

Kp = 0.03125
Ki = 0.0013
Kd = 0.005625
db = 0.5
INT.MAX = 1 / Ki
lerr = 0
LTIME = Date
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or MCLG then Goto FULL_CLOSED
If UNCHTG or (MWU and (ST < HSP)) then Goto FULL_OPEN
Goto MODULATING

Line FULL_OPEN
- RHCV = 100
- RHCV INT = (RHCV / 100) / Ki
- LTIME = Date
- lerr = 0
- If FREZ then Goto FULL_OPEN
- If (not SFAN.POR) or MCLG then Goto FULL_CLOSED
- If UNCHTG or (MWU and (ST < HSP)) then Goto FULL_OPEN
- Goto MODULATING

Line FULL_CLOSED
- RHCV = 0
- RHCV INT = 0
- LTIME = Date
- lerr = 0
- If FREZ then Goto FULL_OPEN
- If (not SFAN.POR) or MCLG then Goto FULL_CLOSED
- If UNCHTG or (MWU and (ST < HSP)) then Goto FULL_OPEN
- Goto MODULATING
Line MODULATING
 If FREZ then Goto FULL_OPEN
 If (not SFAN.POR) or MCLG then Goto FULL_CLOSED
 If UNCHTG or (MWU and (ST < HSP)) then Goto FULL_OPEN
 If (RHCV State = Disabled) then Goto MODULATING
 If (abs(RHDAT - RHDAT.TRG) > db) and (abs(Date - LTIME) > 2) and (RHCV State = Enabled) then
 PIDval = PID.F(RHDAT, RHDAT.TRG, Kp, Ki, Kd, 0, RHCV.ACT, lerr, RHCV.INT, LTIME)
 RHCV.INT = minimum(RHCV.INT, INT.MAX)
 RHCV = minimum(maximum((PIDval * (RHCV.RHI - RHCV.RLO)) + RHCV.RLO, RHCV.RLO), RHCV.RHI)
 LTIME = Date
 Else
 If (abs(RHDAT - RHDAT.TRG) <= db) and (abs(Date - LTIME) > 3) then Goto IN_DEADBAND
 If (RHCV State = Disabled) then
 RHCV.INT = (RHCV / 100) / Ki
 LTIME = Date
 Endif
 Endif
 Endif

Line IN_DEADBAND
 If FREZ then Goto FULL_OPEN
 If (not SFAN.POR) or MCLG then Goto FULL_CLOSED
 If (abs(RHDAT - RHDAT.TRG) > db) then Goto MODULATING
 LTIME = Date
 lerr = 0

Line E
 RHCV.E.TIME = Date
 Goto Decision

Example:
Reheat coil valve control – as space temperature falls below its active setpoint, the heating valve will modulate open. As the space temperature rises above its active setpoint, the heating valve will modulate closed.
HVAC-005 – STANDARD AIR HANDLER OUTDOOR AIR DAMPER PROGRAM
This is standard logic for control of an outside air damper.

Numeric Kp, Ki, Kd, lerr, db, PIDval, OAD.ACT, L1, INT.MAX
Datetime LTIME

Line Decision
OAD.ACT = 1
Kp = 0.02
Ki = 0.0008
Kd = 0
db = 1
INT.MAX = 1 / Ki
LTIME = Date
lerr = 0
If FREZ then Goto FREZ_CLOSED
If (not SFAN.POR) or SMOK or (not OCC) or MWU or ((MCD or OCC.EST) and (not ECON)) then Goto FULL_CLOSED
If (not ECON) and (CO2 < CO2.SP) then Goto MIN_POS
Goto MODULATING

Line FREZ_CLOSED
OAD = 0
RLAD = OAD
OAD.INT = 0
LTIME = Date
lerr = 0
If (not FREZ) and SFAN.POR then Goto FREZ_OPEN

Line FREZ_OPEN
If L1 > 30 then
 OAD = OAD + 1
 RLAD = OAD
 OAD.INT = (OAD / 100) / Ki
 L1 = 0
Endif
L1 = L1 + 1
If FREZ then Goto FREZ_CLOSED
If (OAD > OAD.MIN.POS.SP) then Goto MIN_POS
LTIME = Date
lerr = 0

Line FULL_CLOSED
OAD = 0
RLAD = OAD
OAD.INT = 0
LTIME = Date
lerr = 0
If FREZ or (OAT < 40) then Goto FREZ_CLOSED
If (not SFAN.POR) or SMOK or (not OCC) or MWU or ((MCD or OCC.EST) and (not ECON)) then Goto FULL_CLOSED
If (not ECON) and (CO2 < CO2.SP) then Goto MIN_POS
Goto MODULATING

Line MIN_POS
OAD = OAD.MIN.POS.SP
RLAD = OAD
OAD.INT = (OAD / 100) / Ki
LTIME = Date
lerr = 0
If FREZ then Goto FREZ_CLOSED
If (not SFAN.POR) or SMOK or (not OCC) or MWU or ((MCD or OCC.EST) and (not ECON)) then Goto FULL_CLOSED
If (not ECON) and (CO2 < CO2.SP) then Goto MIN_POS
Goto MODULATING

Line MODULATING
If FREZ then Goto FREZ_CLOSED
If (not SFAN.POR) or SMOK or (not OCC) or MWU or ((MCD or OCC.EST) and (not ECON)) then Goto FULL_CLOSED
If (not ECON) and (CO2 < CO2.SP) then Goto MIN_POS
If (abs(MAT - MAT.TRG) > db) and (abs(Date - LTIME) > 2) and (OAD State = Enabled) then
 PIDval = PID.F(MAT, MAT.TRG, Kp, Ki, Kd, 0, OAD.ACT, lerr, OAD.INT, LTIME)
 OAD.INT = minimum(OAD.INT, INT.MAX)
 OAD = minimum(maximum((PIDval * (OAD.RHI - OAD.MIN.POS.SP)) + OAD.MIN.POS.SP, OAD.MIN.POS.SP), OAD.RHI)
 RLAD = OAD
 LTIME = Date
Else
 If (abs(MAT - MAT.TRG) <= db) and (abs(Date - LTIME) > 3) then Goto IN_DEADBAND
 If (OAD State = Disabled) then
 OAD.INT = (OAD / 100) / Ki
 LTIME = Date
 RLAD = OAD
 Endif
Endif

Line IN_DEADBAND
If (abs(MAT - MAT.TRG) > db) or (TS > 30) then Goto MODULATING
If FREZ then Goto FREZ_CLOSED
If (not SFAN.POR) or SMOK or (not OCC) or MWU or ((MCD or OCC.EST) and (not ECON)) then Goto FULL_CLOSED
If (not ECON) and (CO2 < CO2.SP) then Goto MIN_POS
LTIME = Date
lerr = 0

Example:
Air handling unit – outdoor air damper is fully opened, or opened to minimum outside air position, or modulated based on outside air conditions (economizer controls).
HVAC-006 – STANDARD FACE/BYPASS DAMPER AND PREHEAT VALVE CONTROL
This sequence controls standard face/bypass damper operation and preheat valve control.

Numeric Kp, Ki, Kd, lerr, db, PIDval, FBD.ACT, INT.MAX
Datetime LTIME

Line Decision
FBD.ACT = 0 ' 1 = DIRECT ACTING. Set FBD.ACT to 1 if heating valve is
' a 2-way N.O. valve, or if it is a 3-way valve that is
' open to the hot water coil with 0 psi, 0 volts, or 0 mA
' sent to the valve
' 0 = REVERSE ACTING. Set FBD.ACT to 0 if none of the
' above are true.

Kp = 0.025
Ki = 0.002
Kd = 0
db = 0.25
INT.MAX = 1 / Ki
lerr = 0
LTIME = Date
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or (OAT > 55) or (CCV > 0) then Goto FULL_CLOSED
Goto MODULATING

Line FULL_OPEN
PHCV = On
FBD = 100
FBD.INT = (FBD / 100) / Ki
LTIME = Date
lerr = 0
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or (OAT > 55) or (CCV > 0) then Goto FULL_CLOSED
Goto MODULATING

Line FULL_CLOSED
If (OAT < 55) and (CCV <= 0) then
 PHCV = On
 FBD = 100
Else
 PHCV = Off
 FBD = 0
Endif
FBD.INT = 0
ETIME = Date
lerr = 0
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or (OAT > 55) or (CCV > 0) then Goto FULL CLOSED
Goto MODULATING

Line MODULATING
PHCV = On
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or (OAT > 55) or (CCV > 0) then Goto FULL CLOSED
If (abs(PHDAT - PHDAT.SP) > db) and (abs(Date - LTIME) > 2) and (FBD State = Enabled) then
 PIDval = PID.F(PHDAT, PHDAT.SP, Kp, Ki, Kd, 0, FBD.ACT, lerr, FBD.INT, LTIME)
 FBD.INT = minimum(FBD.INT, INT.MAX)
 FBD = minimum(maximum((PIDval * (FBD.RHI - FBD.RLO)) + FBD.RLO, FBD.RLO), FBD.RHI)
 LTIME = Date
Else
 If (abs(PHDAT - PHDAT.SP) <= db) and (abs(Date - LTIME) > 3) then Goto IN_DEADBAND
 If (FBD State = Disabled) then
 FBD.INT = (FBD / 100) / Ki
 LTIME = Date
 Endif
Endif

Line IN_DEADBAND
If FREZ then Goto FULL_OPEN
If (not SFAN.POR) or (OAT > 55) or (CCV > 0) then Goto FULL_CLOSED
If (abs(PHDAT - PHDAT.SP) > db) then Goto MODULATING
LTIME = Date
lerr = 0

Line E
FBD.E.TIME = Date
Goto Decision

Example:
Air handling unit with integral face and bypass damper – When outside air temperature falls below a fixed setpoint, the heating coil control valve is opened to prevent coil freezing. The face and bypass dampers modulate to maintain a constant supply air temperature.
HVAC-007 - STANDARD EARLY START PROGRAM
This logic determines cool-down and warm-up times for spaces with varying HVAC controls during unoccupied and occupied periods.

' IN THE CALC PROGRAM CSP.DLT=(ST-CSP)*(ST>CSP)
' HSP.DLT=(ST-HSP)*(ST<HSP)

Line EST.CALC
OCC.EST = Off
MWU = Off
MCD = Off
EST.K = average(EST.MINUTES)
EST.DLT = maximum(abs(HSP.DLT), CSP.DLT)
EST = (minimum((maximum((EST.DLT * EST.K), 15)), 180))
If OCC then Goto OCCUPIED
Goto DECISION

Line OCCUPIED
OCC.EST = Off
MWU = Off
MCD = Off
If (not OCC) then Goto EST.CALC

Line DECISION
OCC.EST = Off
MWU = Off
MCD = Off
If (Date > ((START.TIME.L) - (EST * 60))) and (Date <= START.TIME.L) then Goto RECORDTIME
Goto EST.CALC

Line RECORDTIME
OCC.EST = Off
MWU = Off
MCD = Off
EST.DLT = maximum(abs(HSP.DLT), CSP.DLT)
EST.TIME = Date
If (CSP.DLT > abs(HSP.DLT)) and MCLG and (abs(CSP.DLT) > 1) then Goto COOLDOWN
If (abs(HSP.DLT) > 1) then Goto WARMUP
If OCC.CYBER then Goto OCCUPIED

Line COOLDOWN
OCC.EST = Off
MWU = Off
MCD = not OCC.CYBER
If (CSP.DLT <= 1) then Goto CALCULATECOOL

Line WARMUP
OCC.EST = Off
MWU = not OCC.CYBER
MCD = Off
If (HSP.DLT > -1) then Goto CALCULATEWARM

Line CALCULATECOOL
CSP.DLT.OCC = CSP.DLT
EST.MINUTES = ((Date - EST.TIME) / 60) / EST.DLT
If not OCC.CYBER then Goto COOLWAIT
Goto OCCUPIED
Line COOLWAIT
OCC.EST = On
MWU = Off
MCD = Off
If OCC.CYBER then Goto OCCUPIED

Line WARMWAIT
OCC.EST = On
MWU = Off
MCD = Off
If OCC.CYBER then Goto OCCUPIED

Line CALCULATEWARM
HSP.DLT.OCC = HSP.DLT
EST.MINUTES = ((Date - EST.TIME) / 60) / EST.DLT
If not OCC.CYBER then Goto WARMWAIT
Goto OCCUPIED

Line E
EST.E.TIME = Date
Goto DECISION

Example:
This program determines HVAC system start times for morning warm-up and cool-down operating modes based on outside air conditions.
HVAC-008 – STANDARD TARGET RESET PROGRAM

This control function sets the discharge air temperature set point for a target reset control scheme. Target reset control varies the discharge temperature, depending on the space temperature to achieve a target space temperature.

Required External Software Numeric Points:
TARGET.rhi, TARGET.rlo, TARGET.PID

Program Definition:
Numeric actn, CO, TARGETkp, TARGETki, TARGETkd, TARGETdbnd, TARGETlerr

INITIALIZE:
 actn = -1
 TARGETkp = 0.1
 TARGETki = 0.01
 TARGETkd = 0.001
 TARGETdbnd = 0.2 'Deg F
 TARGET.rhi = 75
 TARGET.rlo = 55
 Goto CNTRL

CNTRL:
 If ((abs(CONTROL.POINT - CONTROL.POINT.SETPOINT)) < TARGETdbnd) then
 Goto IN.DeadBand
 PID.F(CONTROL.POINT, CONTROL.POINT.SETPOINT, TARGETkp, TARGETki,
 TARGETkd, actn, TARGETlerr, TARGETint, CO)
 TARGET.PID = CO
 TARGET = ((TARGET.PID * (TARGET.rhi - TARGET.rlo)) + TARGET.rlo)
 Goto MODU.WAIT

MODU.WAIT:
 If (TS >= 2) then Goto CNTRL

IN.DeadBand:
 If ((abs(CONTROL.POINT - CONTROL.POINT.SP)) > TARGETdbnd) or (TS > 60)
 then Goto CNTRL

Variable Definitions:
actn = action (1=DA/-1=RA)
kp = proportional gain
ki = integral gain
kd = derivative
dbnd = deadband
lerr = error
int = integral value
rhi = control range high value
rlo = control range low value
CO = PID function returned value
TARGET = controlled variable
CONTROL.POINT = reference variable
CONTROL.POINT.SETPOINT = reference variable setpoint value
PID.F = PID function call

Example:
Discharge air temperature reset, based on measured space temperature relative to its scheduled setpoint value. As the space temperature falls below its active setpoint, the discharge air target will increase. As the space temperature rises above its active setpoint, the discharge air target will decrease.
This program controls the heating and cooling control for HVAC systems.

Numeric csp.old, hsp.old, PH1, PH2, KI, K2
Numeric SLIDER.VMAX, SLIDER.VMID, SLIDER.VMIN

Line DECISION
SLIDER.VMAX = 2.64
SLIDER.VMID = 1.8
SLIDER.VMIN = 0.1
KI = 0.02
K2 = 0.02
Goto 1

Line 1
DEHUMID.ADJ = LINEFIT.F(RARH, 50, 65, 0, 25)
If RARH > 60 and CHWAVAIL and HWAVAIL and SFAN.POR then Set DEHUMID = On
If RARH < 55 or not CHWAVAIL or not HWAVAIL or not SFAN.POR then Set DEHUMID = Off
OCC = maximum(OCC.CYBER, OVR, OCC.EST)
If (CSP <> csp.old) and ((CSP - HSP) < 2) then
 HSP and hsp.old = CSP - 2
 csp.old = CSP
Endif
If (HSP <> hsp.old) and ((CSP - HSP) < 2) then
 CSP and csp.old = HSP + 2
 hsp.old = HSP
Endif
If (ST.ADJ.RAW >= SLIDER.VMID) then ST.ADJ = LINEFIT.F(ST.ADJ.RAW, SLIDER.VMID, SLIDER.VMAX, 0, ST.ADJ.SP)
If (ST.ADJ.RAW < SLIDER.VMID) then ST.ADJ = LINEFIT.F(ST.ADJ.RAW, SLIDER.VMID, SLIDER.VMIN, 0, -ST.ADJ.SP)
ST.FLTR = (((ST.FLTR * 0.96) + (ST * 0.04)) * (ST < 99 & (ST > -99))) + (ST.FLTR * (ST >= 99 or (ST <= -99)))
HSP.DLT = (ST.FLTR - (HSP + ST.ADJ)) * (ST.FLTR < (HSP + ST.ADJ))
CSP.DLT = (ST.FLTR - (CSP + ST.ADJ)) * (ST.FLTR > (CSP + ST.ADJ))
CLG.TRG = ((CSP + DTAJ - MCD + ST.ADJ) * (OCC or MCD)) + (UNCSP * ((not OCC) and (not MCD)))
HTG.TRG = ((HSP - DTAJ + MWU + ST.ADJ) * (OCC or MWU)) + (UNHSP * ((not OCC) and (not MWU)))
ST.HDLT = ST.FLTR - HTG.TRG
ST.CDLT = ST.FLTR - CLG.TRG
If OCC then
 CCLG and PH1 = (ST.FLTR > (CLG.TRG + 1))
CHTG and PH2 = (ST.FLTR < HTG.TRG) or (RHCV > 0)
Else
 If ST.FLTR > UNCSP then CCLG = On
 If CCLG = On and (ST.FLTR < (UNCSP - 4) or (PH1 and (ST.FLTR < UNCSP))) then
 CCLG and PH1 = Off
 If ST.FLTR < UNHSP then CHTG = On
 If CHTG = On and (ST.FLTR > (UNHSP + 4) or (PH2 and (ST.FLTR > UNHSP)))
then CHTG and PH2 = Off
Endif
UNCHTG = (not OCC) and CHTG
UNCCCLG = (not OCC) and CCLG
MAT.TRG = DAT.TRG - 2
DA.SPR.FLTR = FLTR.F(DA.SPR, DA.SPR.FLTR, 1)
OAD.MIN.POS.TRG = minimum(maximum(((OAD.MIN.POS.TRG + ((CO2 - CO2.HI.SP) * KI))), OAD.MIN.POS.SP), 100)
SFAN.VSD.MAX = minimum(maximum(((SFAN.VSD.MAX) - ((DA.SPR.FLTR - (DA.SPR.HI.SP - 0.5)) * K2)), SFAN.VSD.MIN), 100)
Goto 2
Line 2
SFAN.HIST = SFAN
SFAN.POR = (SFAN.VSD.FDB > 20)
RFAN.HIST = RFAN
RFAN.POR = (RFAN.VSD.FDB > 20)
SSPR.FLTR = FLTR.F(SSPR, SSPR.FLTR, 1)
DA.SPR.FLTR = FLTR.F(DA.SPR, DA.SPR.FLTR, 1)
LGTS.KW = ((LGTS.VOLTS * LGTS.AMPS * LGTS.PF) / 1000)
' TWO-PHASE LGTS.KW = ((LGTS.VOLTS * LGTS.AMPS * LGTS.PF * 2) / 1000)
' THREE-PHASE LGTS.KW = ((LGTS.VOLTS * LGTS.AMPS * LGTS.PF * 1.73) / 1000)
Goto 1
Line E
CALC.E.TIME = Date
Goto 1

Example:
This program controls HVAC systems in heating, cooling, or dehumidification mode based on space temperature and/or space humidity conditions.
HVAC-010 – STANDARD OCCUPANCY OVERRIDE PROGRAM
This sequence allows the occupancy setting to be overridden by the space temperature.

' TRIGGERED BY SPACE TEMPERATURE

Line DECISION
 If (ST > 120) then Goto OVERRIDE_ON
 Goto OVERRIDE_OFF

Line OVERRIDE_ON
 OVR = On
 If (ST > 120) then Goto RESET_TIMER
 If (TM < OVR.TM) then Goto OVERRIDE_ON
 Goto OVERRIDE_OFF

Line RESET_TIMER
 If (ST > 120) then Goto RESET_TIMER
 Goto OVERRIDE_ON

Line OVERRIDE_OFF
 OVR = Off
 Stop

Example:
Air handling unit – if the unit is in unoccupied mode of operation, and the space temperature falls below setpoint, the unit will be switched to occupied mode until the space temperature reaches the setpoint.
HVAC-011 – STANDARD PULSE WIDTH VALVE CONTROL PROGRAM

This is standard pulse width control for a heating control valve.

Numeric KP, DB, HCV.MAXP, HCV.PULSE

Line DECISION
 HCV.MAXP = 150
 KP = 5.55
 DB = 0.5
 If FREZ or WTR.BAL or ((HCV.POS State = Disabled) and (HCV.POS = 100)) then
 Goto FULL_OPEN
 If ((HCV.POS State = Disabled) and (HCV.POS = 0)) or DX then Goto FULL_CLOSED
 If (UNCHTG or MWU) and (ST < HSP) then Goto FULL_OPEN
 If (not SFAN.POR) or (not HWAVAIL) or (MCD and (ST > CSP)) then Goto FULL_CLOSED
 If ((abs(DAT - DAT.TRG)) < DB) then Goto IN_DEADBAND
 Goto MODULATING

Line IN_DEADBAND
 HCV = Off
 If FREZ or WTR.BAL or ((HCV.POS State = Disabled) and (HCV.POS = 100)) then
 Goto FULL_OPEN
 If ((HCV.POS State = Disabled) and (HCV.POS = 0)) or DX then Goto FULL_CLOSED
 If (UNCHTG or MWU) and (ST < HSP) then Goto FULL_OPEN
 If (not SFAN.POR) or (not HWAVAIL) or (MCD and (ST > CSP)) then Goto FULL_CLOSED
 If ((abs(DAT - DAT.TRG)) < DB) then Goto IN_DEADBAND
 Goto MODULATING

Line FULL_OPEN
 HCV = HCV.MAXP
 HCV.POS = 100
 If FREZ or ((HCV.POS State = Disabled) and (HCV.POS = 100)) then Goto
 FULL_OPEN
 If ((HCV.POS State = Disabled) and (HCV.POS = 0)) then Goto RESET_OUTPUT
 If (TS > HCV.MAXP) and ((not UNCHTG and not MWU) or (ST > HSP) or (not HWAVAIL)) and (not WTR.BAL) then Goto RESET_OUTPUT

Line FULL_CLOSED
 HCV = -HCV.MAXP
 HCV.POS = 0
 If FREZ then Goto RESET_OUTPUT
 If ((HCV.POS State = Disabled) and (HCV.POS = 0)) or DX then Goto FULL_CLOSED
 If ((UNCHTG or MWU) and (ST < HSP)) or WTR.BAL or ((HCV.POS State = Disabled) and (HCV.POS = 100)) then Goto RESET_OUTPUT

22
If SFAN.POR and HWAVAIL and (TS > HCV.MAXP) and ((not MCD) or (ST < CSP))
then Goto RESET_OUTPUT

Line RESET_OUTPUT
HCV = Off
Goto DECISION

Line MODULATING
If ((abs(DAT - DAT.TRG)) > DB) then
 If DAT - DAT.TRG > 0 then
 HCV = minimum(-0.1, (maximum(((DAT.TRG - DAT) * KP), -HCV.MAXP)))
 HCV.PULSE = minimum(-0.1, (maximum(((DAT.TRG - DAT) * KP), -HCV.MAXP)))
 HCV.POS = minimum((maximum(((HCV / HCV.MAXP) * 100 + HCV.POS), 0)), 100)
 Else
 HCV = maximum(0.1, (minimum(((DAT.TRG - DAT) * KP), HCV.MAXP)))
 HCV.PULSE = maximum(0.1, (minimum(((DAT.TRG - DAT) * KP), HCV.MAXP)))
 HCV.POS = minimum((maximum(((HCV / HCV.MAXP) * 100 + HCV.POS), 0)), 100)
 Endif
Endif
Goto WAIT_1

Line WAIT_1
If FREZ then Goto RESET_OUTPUT
If not SFAN.POR or (TS > 150) then Goto RESET_OUTPUT

Example:
This program will open, close, or modulate a heating coil control valve as required to
maintain setpoint.
HP-001 – STANDARD DX COOLING CONTROL PROGRAM

This sequence is for the control of cooling via a direct expansion heat pump.

Line DECISION
 If DX then Goto DX_ON
 Goto DX_OFF

Line DX_OFF
 DX = Off
 If (not SFAN.POR) or (not MCLG) or (DAT < DAT.LOW.SP) then Goto DX_OFF
 If (TS < 240) then Goto DX_OFF
 If ((ST.CDLT > 1) and OCC) or MCD or UNCCCLG then Goto DX_ON

Line DX_ON
 DX = On
 If (not SFAN.POR) or (not MCLG) or (DAT < DAT.LOW.SP) then Goto DX_OFF
 If (TS < 240) then Goto DX_ON
 If (ST.CDLT < -1) and (OCC or MCD) then Goto DX_OFF
 If (not OCC) and (not MCD) and (not UNCCCLG) then Goto DX_OFF

Line E
 Goto DECISION

Example:
This program is used to control equipment such as packaged heat pump units as required to maintain space cooling setpoint.
HP-002 – STANDARD FREEZE PROTECTION PUMP PROGRAM

This program is for standard freeze protection for a heat pump.

Line DECISION
 If FREZ.PUMP then Goto PUMP_ON
 Goto PUMP_OFF

Line PUMP_OFF
 FREZ.PUMP = Off
 If FREZ or (OAT < OA.FREZ.PUMP.SP) then Goto PUMP_ON

Line PUMP_ON
 FREZ.PUMP = On
 If (not FREZ) and (OAT > (OA.FREZ.PUMP.SP + 2)) and (TS > 300) then Goto PUMP_OFF

Line E
 FREZ.PUMP.E.TIME = Date
 Goto DECISION

Example:
Air handling unit supplying 100% outside air – if the outside air temperature falls below setpoint, the freeze protection pump will be started to prevent coil freezing. When the outside air temperature rises about setpoint, the pump will be turned off.
HP-003 – STANDARD SMART SENSOR DISPLAY PROGRAM

This logic is to set up space temperature and adjustment for a smart sensor display.

Line **DISPLAY_TEMP**
- LCDdisplay[2] = 11
- LCDdisplay[1] = ST
- LCDdisplay[7] = 1024

If (LCDdisplay[0] = 2) or (LCDdisplay[0] = 5) then Goto **ADJUST_SP**

Line **ADJUST_SP**
- LCDdisplay[2] = 11
- LCDdisplay[1] = (ST.TRG + ST.ADJ)
- LCDdisplay[7] = (1024 + 2048)

If LCDdisplay[0] = 2 then
 - ST.ADJ = minimum(maximum((ST.ADJ + 0.5), -ST.ADJ.SP), ST.ADJ.SP)
 - Goto **ADJUST_SP**
Endif

If LCDdisplay[0] = 5 then
 - ST.ADJ = minimum(maximum((ST.ADJ - 0.5), -ST.ADJ.SP), ST.ADJ.SP)
 - Goto **ADJUST_SP**
Endif

If (LCDdisplay[0] = 6) or (TS > 30) then Goto **DISPLAY_TEMP**

EXAMPLE:
This routine will adjust the smart sensor display in a temperature measurement application.
PUMP-001 – STANDARD PUMP START/STOP PROGRAM

This is standard logic for controlling multiple pumps to be on or off in various configurations.

Line DECISION
- If CHWP5 and CHWP6 then Goto BOTH_ON
- If CHWP5 then Goto CHWP5_ON
- If CHWP6 then Goto CHWP6_ON
- Goto CHWP_OFF

Line CHWP_OFF
- CHWP5 = Off
- CHWP6 = Off
- If (not CHWSYS.RUN) or (TS < 30) then Goto CHWP_OFF
- If CHWP5.LEAD then Goto CHWP5_ON
- Goto CHWP6_ON

Line CHWP5_ON
- CHWP5 = On
- CHWP6 = Off
- If (not CHWSYS.RUN) and (TM > SCHWP.MIN.ON) and (NO.CHWP.ON <= 0) then
 Goto CHWP_OFF
- If (not CHWP5.POR) then Goto CHWP5_WAIT
- If (not CHWP5.LEAD) then Goto BOTH_ON
- If SCHWP.LAG then Goto BOTH_ON

Line CHWP5_WAIT
- CHWP5 = On
- CHWP6 = Off
- If CHWP5.POR then Goto CHWP5_ON
- If (TS > 60) then Goto BOTH_ON

Line BOTH_ON
- CHWP5 = On
- CHWP6 = On
- If (TS < 5) then Goto BOTH_ON
- If (not CHWSYS.RUN) and (TM > SCHWP.MIN.ON) and (NO.CHWP.ON <= 0) then
 Goto CHWP_OFF
- If SCHWP.LAG then Goto BOTH_ON
- If CHWP5.LEAD and CHWP5.POR then Goto CHWP5_ON
- If (not CHWP5.LEAD) and CHWP6.POR then Goto CHWP6_ON

Line CHWP6_ON
- CHWP5 = Off
- CHWP6 = On
If (not CHWSYS.RUN) and (TM > SCHWP.MIN.ON) and (NO.CHWP.ON <= 0) then
 Goto CHWP_OFF
If (not CHWP6.POR) then Goto CHWP6_WAIT
If CHWP5.LEAD then Goto BOTH_ON
If SCHWP.LAG then Goto BOTH_ON

Line CHWP6_WAIT
 CHWP5 = Off
 CHWP6 = On
If CHWP6.POR then Goto CHWP6_ON
If (TS > 60) then Goto BOTH_ON

Line E
 CHWP5_6.E.TIME = Date
 Goto DECISION

Example:
This program is used to control operation of two pumps. Based on input, such as from system operator, either pump will run, both pumps will run, or no pumps will run.
PUMP-002 – STANDARD LAG PUMP CONTROL PROGRAM
This is a standard routine to operate a lag pump in a lead/lag configuration.

Line DECISION
 If SCHWP.LAG then Goto SCHWP.LAG.ON
 Goto SCHWP.LAG.OFF

Line SCHWP.LAG.OFF
 SCHWP.LAG = Off
 If SCHWP.POR and ((CHW.DPR.SP - CHW.DPR.FLTR) > 2) and SCHWP.MAX.VSD >= 100 then Goto LAG.DELAY1

Line LAG.DELAY1
 SCHWP.LAG = Off
 If (not SCHWP.POR) or ((CHW.DPR.SP - CHW.DPR.FLTR) < 2) or (SCHWP.MAX.VSD < 100) then Goto SCHWP.LAG.OFF
 If (TM > LAG.DELAY) then Goto SCHWP.LAG.ON

Line SCHWP.LAG.ON
 SCHWP.LAG = On
 If ((SCHWP.MAX.VSD < 50) and (TM > 10)) then Goto SCHWP.LAG.OFF

Line E
 SCHWP.LAG.E.TIME = Date
 Goto DECISION

Example:
Operating and stand-by heating water pumps – if the lead pump fails, the lag pump will be started.
CHILLER-001 – STANDARD CHILLER STAGING PROGRAM
This is a standard routine for starting multiple chillers connected as a system.

Line DECISION
If CLR.STAGE3 then Goto CLR.STAGE3.ON
If CLR.STAGE2 then Goto CLR.STAGE2.ON
If CLR.STAGE1 then Goto CLR.STAGE1.ON
Goto CLR.STAGES.OFF

Line CLR.STAGES.OFF
CLR.STAGE1 = Off
CLR.STAGE2 = Off
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIl and CHWP8.FAIl then Goto CLR.STAGES.OFF
If CHWSYS.RUN and SCHWP.POR and (TM > CLR.MIN.OFF) then Goto CLR.DELAY1

Line CLR.DELAY1
CLR.STAGE1 = Off
CLR.STAGE2 = Off
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIl and CHWP8.FAIl then Goto CLR.STAGES.OFF
If (not CHWSYS.RUN) or (not SCHWP.POR) then Goto CLR.STAGES.OFF
If (TM > CLR.START.DELAY) then Goto CLR.STAGE1.ON

Line CLR.STAGE1.ON
CLR.STAGE1 = On
CLR.STAGE2 = Off
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIl and CHWP8.FAIl then Goto CLR.STAGES.OFF
If ((not CHWSYS.RUN) or (not SCHWP.POR)) and (TM > CLR.MIN.ON) then Goto CLR.STAGES.OFF
If CHWS < CHWS.STAGEUP.SP and not CHWP7.FAIl and not COMP1_2.ALM then Goto DECISION
If ((CHWS > CHWS.STAGEUP.SP) and (TM > 30)) or (CHWP7.FAIl and (not CHWP8.FAIl)) or COMP1_2.ALM and STAGE3.LOADSHED = Off then Goto CLR.DELAY2

Line CLR.DELAY2
CLR.STAGE1 = On
CLR.STAGE2 = Off
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIL and CHWP8.FAIL then Goto CLR.STAGES.OFF
If ((not CHWSYS.RUN) or (not SCHWP.POR)) and (TM > CLR.STAGE.DELAY) then
Goto CLR.STAGES.OFF
If (TM > CLR.STAGE.DELAY) or CHWP7.FAIL or COMP1_2.ALM then Goto
CLR.STAGE2.ON

Line CLR.STAGE2.ON
CLR.STAGE1 = Off
CLR.STAGE2 = On
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIL and CHWP8.FAIL then Goto CLR.STAGES.OFF
If ((not CHWSYS.RUN) or (not SCHWP.POR)) and (TM > CLR.MIN.ON) then Goto
CLR.STAGES.OFF
If ((TM > 30) and (CHWS > CHWS.STAGEUP.SP)) or (CHWP8.FAIL and (not
CHWP7.FAIL)) then Goto CLR.DELAY3
If ((TM > 30) and (CHWS < CHWS.STAGEDN.SP) and (TM > CLR.MIN.ON) and (not
CHWP7.FAIL) and (not COMP1_2.ALM)) or STAGE3.LOADSHED = On then Goto
CLR.STAGE1.ON

Line CLR.DELAY3
CLR.STAGE1 = Off
CLR.STAGE2 = On
CLR.STAGE3 = Off
CLR.STAGE4 = Off
If CHWP7.FAIL and CHWP8.FAIL then Goto CLR.STAGES.OFF
If ((not CHWSYS.RUN) and (TM > CLR.STAGE.DELAY)) or (not SCHWP.POR) then
Goto CLR.STAGES.OFF
If (TM > CLR.STAGE.DELAY) or CHWP8.FAIL then Goto CLR.STAGE3.ON

Line CLR.STAGE3.ON
CLR.STAGE1 = Off
CLR.STAGE2 = Off
CLR.STAGE3 = On
CLR.STAGE4 = Off
If CHWP7.FAIL and CHWP8.FAIL then Goto CLR.STAGES.OFF
If ((not CHWSYS.RUN) and (TM > CLR.MIN.ON)) or (not SCHWP.POR) then Goto
CLR.STAGES.OFF
If ((CLR1.MAX.CMP.SPD <= CLR1.MIN.SPD.SP) and (CHWS <
CHWS.STAGEDN.SP) and (TM > CLR.MIN.ON)) or (CHWP7.FAIL and (not
CHWP8.FAIL)) then Goto CLR.STAGE2.ON

Line E
CLR.STG.E.TIME = Date
Goto DECISION

Example:
This program is used to start and stop individual chillers which are part of a multiple chiller installation, as required to maintain chilled water supply temperature setpoint.
CHILLER-002 – MECHANICAL COOLING DECISION PROGRAM
This routine is decision logic which determines when to run a chilled water system, based on outside air temperature.

Line DECISION
 If CHWSYS.RUN then Goto CHWSYS_RUN
 Goto CHWSYS_OFF

Line CHWSYS_OFF
 CHWSYS.RUN = Off
 If CLR.RUN and ((OAT > OA.CLG.SP) or (AHU.CCLG > 5)) and (TM > CHWSYS.MIN.OFF) then Goto CHWSYS_RUN

Line CHWSYS_RUN
 CHWSYS.RUN = On
 If (not CLR.RUN) or ((OAT < (OA.CLG.SP - 2)) and (AHU.CCLG < 3)) and (TM > CHWSYS.MIN.ON) then Goto CHWSYS_OFF

Line E
 CHWSYS.E.TIME = Date
 Goto DECISION

Example:
This program is used to start a chilled water system - chillers, pumps, and cooling tower - based on outside air temperature. If the outside air temperature rises above setpoint, the system is started. When the outside air temperature falls below the setpoint, the system is turned off.
This is standard routine for operating cooling fans in a lead/lag configuration, where the lead is alternated automatically on a regular basis.

'Tri-M Standard LEADLAG01

Line DECISION
 If CT1.FAN1.LEAD then Goto CT1.FAN1LEAD
 Goto CT1.FAN2LEAD

Line CT1.FAN1LEAD
 CT1.FAN1.LEAD = On
 CT1.FAN2.LEAD = Off
 If (Weekday = Wednesday) and (Hourofday = 8) then Goto SWITCHTO2

Line SWITCHTO2
 CT1.FAN1.LEAD = Off
 CT1.FAN2.LEAD = On
 If (Weekday <> Wednesday) or (Hourofday >= 9) then Goto CT1.FAN2LEAD

Line CT1.FAN2LEAD
 CT1.FAN1.LEAD = Off
 CT1.FAN2.LEAD = On
 If (Weekday = Wednesday) and (Hourofday = 8) then Goto SWITCHTO1

Line SWITCHTO1
 CT1.FAN1.LEAD = On
 CT1.FAN2.LEAD = Off
 If (Weekday <> Wednesday) or (Hourofday >= 9) then Goto CT1.FAN1LEAD

Line E
 LL.CT1.E.TIME = Date
 Goto DECISION

Example:
When a cooling tower includes two fans, this program is used to automatically alternate the lead fan and the lag fan at a specific time on a specific day of the week.